STABILITY OF TRANSPORT PROCESSES IN CONTINUOUS
MEDIA WITH HEAT OR MATERIAL SOURCES AND SINKS
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A sufficient stability criterion is obtained for the heat-conduction process in a continuous medium
with variable coefficient of heat conduction and heat source.

Although this investigation is equally valid for both heat propagation because of heat conduction and for
material transport because of diffusion, for definiteness we shall nevertheless speak everywhere here about
heat propagation.

The stability of transportprocesses in continuous media with heatsources has been investigated in a
number of papers [1-5]. A variational treatmentof this question, differentfrom [1-5], is elucidated here.

The stationary energy equation has the form
div(zyT) +-Q =0, 1)

where T isthe temperature, w=w(T) is the heat-conduction coefficient, Q =Q(T) is the volume intensity of
evolution (heat absorption).

The functional J whose Euler equationis (1) is
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where T, is some reference point of T and integration is over the volume V. In fact, the first variation of
J(6J) after the utilization of Green's theorem has the form

8J = 5 28T (yTdS) — ( »ldiv (eyT) + QI 6TdV, 3)
where the integral over the surfaceS is zero for fixed values of T and S, and the condition 6J =0 results in(1)
for arbitrary 6T within the domain.

The nonstationary equation corresponding to (1) is

aT \
pc 5 div{zyT) + Q, (4)

where p is the density and c is the specific heat.

Considering T in (2) to satisfy (4) and, therefore, J to dependalready on t, we find the rate of change of
J. Using (4), we obtain analogously to (3)
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For §T=0 the quantity 8J/9t is negative on Sbecause of pcn>0. The stationary (extremal) valued =J is
achieved upon compliance with the condition (1); i.e., 8J,=0. However, forthe value of J, to be stable it is
necessary that this extremum of J be a minimum for 8J/8t<0; i.e., §2J,>0.

It is easy tosee that

0%1n»
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Therefore, for 5T =0 on S, compliance with the condition
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2lnx , | 0Q/%
is sufficient for 62J 0> 0. In particular, for n=const condition (7} is satisfiedfor 8Q/8T < 0, which holds inthe
case of Joulean dissipation, e.g., when Q =j2/¢ (j is the electrical currentdensity, assumed constant, and o

is the electrical conductivity which grows with T).

The reverse inequality to (7) is anecessary (butnot sufficient) condition for instability. In the case of
Joulean dissipation when the dependence of o on T is quite strong, necessary for compliance with the last cri-
terion is that(azlnu/aTz)p >0 and, moreover,

Y.l)z - d(xo)™! ) ( 2lnx !
( i ( or Jp,\ 0T? ) o
where p is the pressure. The condition (azlnn/aTz)p> 0 is satisfied onsections abutting the minimums of the

equilibrium curve of »as afunction of T for the parameter p. These sections existduring the passage of equi-
librium chemical reactions in a medium.

In the case of nonequilibrium chemical reactions, when Q can betreated as a heat source (or sink), the
criterion (7) cannot be satisfied for nw=const. This holds for exothermal reactions when Q ~exp(—E/T), where
E>0 isthe activation energy.

Here the stability investigation should be conducted by solving a variational equation which is obtained
upon varying (1). This equation, called the Jacobi equation, is simultaneously the Euler equation of functional
(6) (see [6], for instance).

For a perturbed regime deviating slightly from (1), Eq. {4) has the linear form

aT’ Q .
AT+ =T
pe = = AT 5F (8)
Considering the perturbation T'~—T'(x)exp(kr), where r is the radius inthe y — z plane and k isthe appropriate
wave vector, we obtain from (8)
or' _ #(T) (kzx— ?9_) T"
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Here all the coefficients are functions of the unperturbed value of T and, therefore, are functions of x. The
functional in T' whose Euler equation is the right-hand side of (9) has the form

J = 1 04T \* _ 2 | B — ?—(—2—) (i dx.
2 dx orT I 2
Its second variation is
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and the sufficient stability condition

2lnx (0T Y _0Qix
aT: (Gx, toaT (10)

is weaker than the analogous condition (7).

Therefore, taking account of periodic perturbations in a plane perpendicular to the direction of the unper-
turbed distribution of T results in greater stabilizationof this distribution. In other words, longitudinal pertur-
bations (in the distribution) are most dangerous: I the system is stable with respect to them, then it willbeall
the more stable in the presence of transverse perturbations. Onthe other hand, ifthe system isunstable with
respect tothe longitudinal perturbations, then switching in sufficiently shortwave transverse perturbations will
stabilize the system.

As mentioned above, the Jacobi equation must be solved inthe case of noncompliance with the sufficient
stability conditions (7) or (10). If n=const and Q= exp(aT), then analytic solutions of both the Euler and Jacobi
equations and of the stability problem in its traditional formulation can be obtained in the one-dimensional case.
Th following fact [7)] is the foundation for this.
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The expression
y=9 [——1— (C.e0 -+ ety ]
@
is a solution of the equation

Y =[R—2(0'/9)1y
under the condition

(@ 19) + 2 (¢'/9) (¢'/e) = 0.
Here the primes denote differentiation withrespect to x, A=const isa parameter, C, are constants of integra-
tion, and ¢ =sinx, cos x. On makingthe replacements x, A—ix, i\, we have ¢ =sinhx, coshx.
The Jacobiequation inthe combustion case (o> 0) has the form

d*t 2

L 4 =0,

dn®  ch?y (1)

where 7 is a dimensionless coordinate (n-=n=n,) and 7 = oT' isa dimensionless temperature perturbation.
The solution of (11) satisfying the conditions 1(n-) =0 and dr/dn(n.) =1 is the following [6]:

T = ~thn_{14-[(n_—cth n_}—njthn). (12)
For a nonmonotonic change in T across a layer when 1 =0 there corresponds maxT, n_s0=n4, and

—n_ ~n.=c_chn_=a,chn_>0, o /a_=chyjchn_=p<1,
where o, and B are certain constants. We hence obtain
In_| =o_chn_|— Arch(fchn_p. (13)

Depending on the values of e~and 5, Eq. (13) in I5-| has either two or no solutions. The derivative of the
right-hand side of (13) with respect to I5.11is

Y= thin_|[n_|—(cthn, —n)l

while the derivative of the left-hand side of (13) withrespect to In_1 isone. Since y =1 corresponds to a lesser
and =1 to a greater solution of In_| in the presence of solutions, it follows from (12) that 7(n,)=0 holds for
the first solution and 7(n4) =0 for the second. It can be seen that the inequality 7(n)> 0 is satisfied for n_<n<
7, for the first solution while the sign of T changes in the same range of variation of 5 for the second solution.
In conformity with the theory of sufficient conditions for the weak minimum of a functional[6], this means that
6%3,>0 for the first solution but the sign of §2J,is uncertain for the second. The same result is obtained for a
monotonic change in T across the layer also.

Therefore, even in the combustion case when the sufficient condition for stability (7) is not satisfied, the
mode being realized physically (the first solution) corresponds to absolute stability of the system relative to
the temperature perturbations under consideration.

The evolution criterion used here 8J/5t< 0 hasno relation to the known prineiple of the minimum of
entropy occurrence (see (8, 9], for example), and isa result of the parabolicity of the nonstationary equation (4)
in the long run. The validity of this criterion is not constrained by the condition of constancy of the heat-conduc-
tion coefficient . However, for w=const the criterion is true even taking into account a convective term of
the form pcv 8T /ox, which is not possible for the principle of the minimum of the rate of entropy occurrence
(8, 9].
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